Self-supervised representation learning follows a paradigm of withholding some part of the data and tasking the network to predict it from the remaining part. Towards this end, masking has emerged as a generic and powerful tool where content is withheld along the sequential dimension, e.g., spatial in images, temporal in audio, and syntactic in language. In this paper, we explore the orthogonal channel dimension for generic data augmentation. The data for each channel is quantized through a non-uniform quantizer, with the quantized value sampled randomly within randomly sampled quantization bins. From another perspective, quantization is analogous to channel-wise masking, as it removes the information within each bin, but preserves the information across bins. We apply the randomized quantization in conjunction with sequential augmentations on self-supervised contrastive models. This generic approach achieves results on par with modality-specific augmentation on vision tasks, and state-of-the-art results on 3D point clouds as well as on audio. We also demonstrate this method to be applicable for augmenting intermediate embeddings in a deep neural network on the comprehensive DABS benchmark which is comprised of various data modalities. Code is availabel at http://www.github.com/microsoft/random_quantize.
translated by 谷歌翻译
Deep Neural Networks (DNNs) suffer from domain shift when the test dataset follows a distribution different from the training dataset. Domain generalization aims to tackle this issue by learning a model that can generalize to unseen domains. In this paper, we propose a new approach that aims to explicitly remove domain-specific features for domain generalization. Following this approach, we propose a novel framework called Learning and Removing Domain-specific features for Generalization (LRDG) that learns a domain-invariant model by tactically removing domain-specific features from the input images. Specifically, we design a classifier to effectively learn the domain-specific features for each source domain, respectively. We then develop an encoder-decoder network to map each input image into a new image space where the learned domain-specific features are removed. With the images output by the encoder-decoder network, another classifier is designed to learn the domain-invariant features to conduct image classification. Extensive experiments demonstrate that our framework achieves superior performance compared with state-of-the-art methods.
translated by 谷歌翻译
Deep Metric Learning (DML) is a group of techniques that aim to measure the similarity between objects through the neural network. Although the number of DML methods has rapidly increased in recent years, most previous studies cannot effectively handle noisy data, which commonly exists in practical applications and often leads to serious performance deterioration. To overcome this limitation, in this paper, we build a connection between noisy samples and hard samples in the framework of self-paced learning, and propose a \underline{B}alanced \underline{S}elf-\underline{P}aced \underline{M}etric \underline{L}earning (BSPML) algorithm with a denoising multi-similarity formulation, where noisy samples are treated as extremely hard samples and adaptively excluded from the model training by sample weighting. Especially, due to the pairwise relationship and a new balance regularization term, the sub-problem \emph{w.r.t.} sample weights is a nonconvex quadratic function. To efficiently solve this nonconvex quadratic problem, we propose a doubly stochastic projection coordinate gradient algorithm. Importantly, we theoretically prove the convergence not only for the doubly stochastic projection coordinate gradient algorithm, but also for our BSPML algorithm. Experimental results on several standard data sets demonstrate that our BSPML algorithm has better generalization ability and robustness than the state-of-the-art robust DML approaches.
translated by 谷歌翻译
Various depth estimation models are now widely used on many mobile and IoT devices for image segmentation, bokeh effect rendering, object tracking and many other mobile tasks. Thus, it is very crucial to have efficient and accurate depth estimation models that can run fast on low-power mobile chipsets. In this Mobile AI challenge, the target was to develop deep learning-based single image depth estimation solutions that can show a real-time performance on IoT platforms and smartphones. For this, the participants used a large-scale RGB-to-depth dataset that was collected with the ZED stereo camera capable to generated depth maps for objects located at up to 50 meters. The runtime of all models was evaluated on the Raspberry Pi 4 platform, where the developed solutions were able to generate VGA resolution depth maps at up to 27 FPS while achieving high fidelity results. All models developed in the challenge are also compatible with any Android or Linux-based mobile devices, their detailed description is provided in this paper.
translated by 谷歌翻译
Traffic state prediction in a transportation network is paramount for effective traffic operations and management, as well as informed user and system-level decision-making. However, long-term traffic prediction (beyond 30 minutes into the future) remains challenging in current research. In this work, we integrate the spatio-temporal dependencies in the transportation network from network modeling, together with the graph convolutional network (GCN) and graph attention network (GAT). To further tackle the dramatic computation and memory cost caused by the giant model size (i.e., number of weights) caused by multiple cascaded layers, we propose sparse training to mitigate the training cost, while preserving the prediction accuracy. It is a process of training using a fixed number of nonzero weights in each layer in each iteration. We consider the problem of long-term traffic speed forecasting for a real large-scale transportation network data from the California Department of Transportation (Caltrans) Performance Measurement System (PeMS). Experimental results show that the proposed GCN-STGT and GAT-STGT models achieve low prediction errors on short-, mid- and long-term prediction horizons, of 15, 30 and 45 minutes in duration, respectively. Using our sparse training, we could train from scratch with high sparsity (e.g., up to 90%), equivalent to 10 times floating point operations per second (FLOPs) reduction on computational cost using the same epochs as dense training, and arrive at a model with very small accuracy loss compared with the original dense training
translated by 谷歌翻译
本文提出了一种有效且安全的方法,可以避免基于LiDAR的静态和动态障碍。首先,点云用于生成实时的本地网格映射以进行障碍物检测。然后,障碍物由DBSCAN算法聚集,并用最小边界椭圆(MBE)包围。此外,进行数据关联是为了使每个MBE与当前帧中的障碍匹配。考虑到MBE作为观察,Kalman滤波器(KF)用于估计和预测障碍物的运动状态。通过这种方式,可以将远期时间域中每个障碍物的轨迹作为一组椭圆化。由于MBE的不确定性,参数化椭圆形的半肢和半尺寸轴被扩展以确保安全性。我们扩展了传统的控制屏障功能(CBF),并提出动态控制屏障功能(D-CBF)。我们将D-CBF与模型预测控制(MPC)结合起来,以实施安全至关重要的动态障碍。进行了模拟和实际场景中的实验,以验证我们算法的有效性。源代码发布以供社区参考。
translated by 谷歌翻译
建模城市环境中的网络级交通流量如何变化对于运输,公共安全和城市规划中的决策有用。交通流量系统可以视为一个动态过程,随着时间的推移,状态之间(例如,每个道路段的交通量)之间过渡。在现实世界中的流量系统中,诸如交通信号控制或可逆车道更改之类的交通操作动作,该系统的状态受历史状态和交通操作的行动的影响。在本文中,我们考虑了在现实世界中建模网络级交通流量的问题,在现实世界中,可用数据稀疏(即仅观察到交通系统的一部分)。我们提出了Dtignn,该方法可以预测稀疏数据的网络级流量流。 Dtignn将交通系统建模为受交通信号影响的动态图,学习以运输的基本过渡方程为基础的过渡模型,并预测未来的交通状态在此过程中归类。通过全面的实验,我们证明了我们的方法优于最先进的方法,并且可以更好地支持运输中的决策。
translated by 谷歌翻译
不同对象之间的闭塞是多对象跟踪(MOT)中的典型挑战,这通常导致由于丢失的检测到的对象导致较差的跟踪结果。多对象跟踪中的常见做法是重新识别出现后的错过对象。虽然重新识别可以提高跟踪性能,但是需要培训型号的身份的注释。此外,这种重新识别的做法仍然不能在探测器错过时跟踪那些高度遮挡的物体。在本文中,我们专注于在线多目标跟踪和设计两种新颖的模块,无监督的重新识别学习模块和遮挡估计模块,处理这些问题。具体地,所提出的无监督重新识别学习模块不需要任何(伪)身份信息,也不需要缩放性问题。所提出的遮挡估计模块尝试预测闭塞发生的位置,其用于估计探测器错过对象的位置。我们的研究表明,当应用于最先进的MOT方法时,所提出的无监督的重新识别学习与监督重新识别学习相当,并且通过所提出的遮挡估计模块进一步改善了跟踪性能。
translated by 谷歌翻译
通过使用图像级分类掩模监督其学习过程,弱监督对象本地化(WSOL)放宽对对象本地化的密度注释的要求。然而,当前的WSOL方法遭受背景位置的过度激活,并且需要后处理以获得定位掩模。本文将这些问题归因于背景提示的不明显,并提出了背景感知分类激活映射(B-CAM),以便仅使用图像级标签同时学习对象和背景的本地化分数。在我们的B-CAM中,两个图像级功能,由潜在背景和对象位置的像素级别功能聚合,用于从对象相关的背景中净化对象功能,并表示纯背景样本的功能,分别。然后基于这两个特征,学习对象分类器和背景分类器,以确定二进制对象本地化掩码。我们的B-CAM可以基于提出的错开分类损失以端到端的方式培训,这不仅可以改善对象本地化,而且还抑制了背景激活。实验表明,我们的B-CAM在Cub-200,OpenImages和VOC2012数据集上优于一级WSOL方法。
translated by 谷歌翻译
融合技术是多模式情绪分析中的关键研究主题。最近的关注的融合表明了基于简单的操作融合的进步。然而,这些融合作品采用单规模,即令牌级或话语水平,单峰代表。这种单尺度融合是次优,因为不同的模态应该以不同的粒度对齐。本文提出了名为Scalevlad的融合模型,从文本,视频和音频中收集多尺度表示,与本地聚合描述符的共享向量,以改善未对准的多模式情绪分析。这些共享向量可以被视为共享主题以对齐不同的模态。此外,我们提出了一种自我监督的移位聚类损失,以保持样本之间的融合特征差异化。底部是对应于三个模态的三个变压器编码器,并且从融合模块产生的聚合特征将馈送到变压器加上完成任务预测的完全连接。在三个流行的情感分析基准,IEMocap,MOSI和MOSEI的实验,证明了基准的显着收益。
translated by 谷歌翻译